VICTOR REINZ®

AFM 38

Feuille Technique 338, anc. FT N° 278

Edition: 03/2006, Annule et remplace les éditions précédantes Vous trouverez la dernière version sur le site www.reinz.com/datasheet.

Composition

AFM 38 est un matériau d'étanchéité sans amiante. Il se compose de fibres d'aramide et d'autres substituts d'amiante, résistants à des températures élevées, qui, sous pression et température élevées, sont liés à des élastomères de haute qualité.

Propriétés

Du point de vue prix, AFM 38 est le matériau d'étanchéité le plus avantageux de la gamme AFM.

Ce matériau résistant aux huiles et aux solvants se caractérise par une compressibilité et une flexibilité très élevées ainsi que par son excellente étanchéité aux gaz. Même sous des pressions de serrage relativement faibles AFM 38 assure l'étanchéité.

Application

- pour l'emploi dans les jonctions soumises à de faibles sollicitations mécano-thermiques,
- pour étancher les éléments de construction facilement déformables, sous pression de serrage relativement faible, p. ex. couvercles de soupapes, carters d'huile, couvercles dans les moteurs à combustion interne, pour les boîtes de vitesses, pompes, appareils et tuyauteries, dans la robinetterie et l'hygiénique
- pour étancher les huiles moteurs et de boîtes de vitesses, les huiles hydrauliques et frigorifiques, les carburants et les solvants, l'eau ainsi que les mélanges eau-antigel et eau- anticorrosion.

Surfaces

AFM 38 est recouvert de série, des deux côtés, d'une couche avec un coefficient de frottement élevé (TD2) qui facilite le démontage. Dans la plupart des cas on peut donc renoncer à un traitement supplémentaire.

Caractéristiques techniques (épaisseur nominale 2,00 mm)

Densité	g/cm³	1,5 - 1,7					
Perte au feu d'après DIN	%	< 45					
Résistance à la traction							
d'après ASTM F 152 quer		N/mm ²	> 7				
d'après DIN 52 910	quer	N/mm ²	> 5				
Perte au feu d'après DIN 52 911							
16 h, 175 °C		N/mm ²	ы 20				
Compressibilité et reprise élastique d'après ASTM F 36, procédé J							
Compressibilité	%	15 - 25					
Reprise élastique		%	> 60				
Etanchéité à l'azote							
d'après DIN 3535, partie 6	mg / (s*m)	< 0,01					
Gonflement d'après ASTM F 146							
dans l'huile IRM 903 (remplace l'ASTM N° 3) 5 h, 150 °C							
Augmentation d'épaisseur	%	< 10					
Augmentation de poids	%	< 20					
dans l'ASTM Fuel B 5 h, RT							
Augmentation d'épaisseur	%	< 15					
Augmentation de poids		%	< 15				
dans un mélange eau/antigel (50:50) 5 h, 100 °C							
Augmentation d'épaisseur	%	< 5					
Augmentation de poids	%	< 15					
Température de pointe	°C	300					
Température de service	°C	200					
Pression de service max	bar	50					

La température de service maxi et la pression maxi ne doivent pas être atteintes simultanément, voir tableau "Pressions de service maxi en présence de différentes températures et fluides"!

DIN 28091-2:		
Compressibilité à froid $\varepsilon_{\rm KSW}$	%	15 - 25
Reprise élastique à froid ϵ_{KRW}	%	8 - 13
Tassement à chaud $\epsilon_{WSW/T}$	%	60 - 70
Reprise élastique à chaud	%	⊌ 0,8
^E WRW/T		
Reprise élastique R	mm	⊌ 0,015
Taux de fuite spécifique λ	mg / (s*m)	< 0,1
Pression résiduelle		
après 1000 h (air, 100 °C)	%	> 50

Caractéristiques d'étanchéité voir tableau:

"Caractéristiques d'étanchéité AFM, CHEMOTHERM® et Joints spiralés graphite FLEXOTHERM® FSP 4"

Les caractéristiques techniques ci-dessus sont valables pour le matériau à l'état de livraison n'ayant pas subi de traitement supplémentaire. En raison toutefois de la multiplicité des conditions d'installation et de service, des conclusions engageant la responsabilité ne peuvent être tirées de ces caractéristiques en ce qui concerne le comportement des matériaux dans une liaison d'étanchéité pour tous les cas d'application. Un droit à la garantie ne peut être déduit des données techniques indiquées. Elles ne représentent pas des qualités promises. En cas de doute, veuillez nous consulter en nous indiquant les conditions de service exactes.

Forme de livraison

Joints d'après plan, indications de cotes ou autres accords.

Feuilles 1500 x 1500 mm (format standard)

Epaisseurs nominales et tolérances d'après DIN 28091-1 (mm)

Limites de tolérances dans une livraison

0,30	0,50	0,75	1,00	1,50	2,00	3,00
±0,10	±0,10	±0,10	±0,10	±0,15	±0,20	±0,30

Différence maxi d'épaisseur dans une feuille:

Epaisseur de la feuille \le 1,00 mm = 0,1 mm; > 1,00 mm = 0,2 mm

Tolérances plus étroites d'après accord.

© VICTOR REINZ 2006